If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+33x-5.3=0
a = 2; b = 33; c = -5.3;
Δ = b2-4ac
Δ = 332-4·2·(-5.3)
Δ = 1131.4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(33)-\sqrt{1131.4}}{2*2}=\frac{-33-\sqrt{1131.4}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(33)+\sqrt{1131.4}}{2*2}=\frac{-33+\sqrt{1131.4}}{4} $
| -13n-2n=15 | | 5(-x+17)=4× | | X=17y+5 | | 1/3x+12=1/5x+8/5 | | 4x+3x+2x-5x=12 | | -4.2x+31.5=-1.64 | | 2(s+9)=14 | | -18-5a=7(8a+6) | | 9g+-13g=12 | | 3(s=4) | | 5y+8=24 | | 6k-4k+1=15 | | 4x^2-62.9x+343.36=0 | | .5=x+.667 | | 2(4+x)=12-3x | | 9+x-3=4x | | x/9+12=15 | | F(x)=4x+2/5x | | 8+5x=6+21x | | 7(-2)=8x+10 | | 2x+3-4x=-7 | | 12x-2x=-90 | | 24=x*3 | | 35/6y=5 | | 160x+42=65 | | 2x/4+(-8)=11 | | 5^2x-3=45 | | 8g-3g-2=18 | | 7f+8+3=-31 | | -6(x-2)+4(3-6)=36 | | 7(b-1)/b=0 | | 1/8d-4+3/8d-4+3/8d-4=5 |